
An Algorithm Based on Response Time and Traffic
Demands to Scale Containers on a Cloud Computing

System

Marcelo Cerqueira de Abranches
Departamento de Ciência da Computação

Universidade de Brasília
Brasília, Distrito Federal (61) 3107-6737/3658

Controladoria-Geral da União
Federal Government of Brazil

Brasília, Distrito Federal (61) 2020-6964
Email: marcelo.abranches@cgu.gov.br

Priscila Solis
Departamento de Ciência da Computação

Universidade de Brasília
Brasília, Distrito Federal (5561) 3107-6737/3658

Email: pris@cic.unb.br

Abstract—This paper proposes a cloud computing architecture
based in containers and on an algorithm that intends to achieve
an efficient allocation of processing resources to comply with
response time requirements in a Web system. The algorithm is
based on the characterization of web requests and on a PID
(Proportional - Integral- Derivative) controller. The proposal was
evaluated with a real time series obtained from an operational
massive web system in a controlled infrastructure. The results
show that the proposal achieves the expected response times
allocating a lower number of containers than other related
proposals.

I. INTRODUCTION

Some of the most challenging and interesting topics on
cloud computing environments are auto elasticity algorithms
[13] and load balancing procedures. Several recent works
address elasticity in cloud computing environments [13], [11],
[5] [7]. Elasticity is a key feature in the cloud computing area
and is the main characteristic that distinguishes this computing
paradigm from the other ones such as grid computing or cluster
computing.

The scalability describes the systems ability to reach a
certain scale. Is the ability of the system to be enlarged
as necessary, mainly to accommodate future growth adding
more resources. Elasticity is a dynamic property that allows
the system to scale on-demand in an operational system.
Elasticity is the ability for clients to quickly request, receive,
and release, many resources as needed. The elasticity implies
in fluctuations, i.e., the number of resources used by a client
may change over time.

The policy to implement elasticity can be manual or
automatic. A manual policy means that the user is responsible
for monitoring his virtual environment and applications and for
performing all elasticity actions. Normally, the cloud provider
provides interfaces with the system with this purpose. In
automatic policy, the control is done by the cloud system, in
accordance with user requirements, normally specified in the
Service Level Agreement (SLA). Then, auto elasticy means

to automatically adapt the environment, and even optimize
resources according to the user demands.

This work proposes an algorithm and an architecture to
promote auto elasticity on a cloud computing environment
based on the efficient allocation of resources. Our work is
focused on processing power elasticity.

This paper makes the following contributions: first, we
propose a cloud computing architecture, integrating several
technologies to promote auto elasticity. Secondly, we analyse
and characterize the web requests of a massive web system
and propose an algorithm that using this typical workload
allows to allocate processing resources to comply with QoS
requirements, in our case, the response time. And finally, this
paper evaluates the proposal in an experimental environment
using several scenarios.

This work is organized as follows: section 2 presents the
related work. Section 3 contains the literature review and the
theoretical concepts used in our proposal. Section 4 describes
the tools and technologies used in the proposed architecture.
Also this section details the proposed auto scaling algorithm.
Section 5 presents the experimental results. Finally, section 6
presents the conclusions and future work of this research.

II. RELATED WORK

The work [11], compares different methods to obtain auto
elasticity on a cloud computing environment. These methods
can be classified into 2 categories: reactives and predictives.
Those techniques are based on machine learning, queueing
theory, control theory, temporal series analysis, among others.

The work [5] proposes an algorithm called PRESS to
predict CPU loads by extracting consumption patterns and
adjust resource allocation. Their approach uses two methods
to perform online predictions: the first is based on the use of
signal processing (Fast Fourier Transforms -FFT) to extract
dominant frequencies. This frequencies are used to generate
a time series and different time windows are compared. The
Pearson correlation index is generated for various windows. If978-1-5090-3216-7/16/$31.00 c©2016 IEEE

it is obtained a Pearson correlation index greater than 0.85,
the average value of the resources in each position of the time
series is used to generate a forecast to the next window and
the virtual machine’s resources are adjusted. If a pattern is not
identified, they propose an approach that uses a Markov chain
with finite number of states to perform the forecast.

Another work that proposes auto elasticity is Haven [13].
This proposal is based on monitoring CPU and memory loads
for each virtual machine in a load balancing pool. From CPU
and memory thresholds previously established, Haven loads
new virtual machines and insert them in the load balancing
pool. In addition, the load balancer which is implemented with
SDN (Software Defined Network), directs each request to the
least loaded member of the pool.

The work [7] proposes and provides a tool called HPA
(Horizontal Pod Autoscaler). This tool works by scaling the
environment (number of containers) from CPU average thresh-
olds of containers that serve a given application.

Our proposal is different from PRESS, as it does not per-
form load prediction, but rather, performs resource allocation
or deallocation, based on the response time observed from
an application behind a load balancer, prior to a workload
characterization. Our proposal is reactive since it uses the
variation of the average response time of an application to
decide using control theory the allocation or deallocation of
resources. Also, our proposal is different from PRESS that
performs vertical scaling. Our proposal performs horizontal
scalability, that is, new instances are allocated behind a load
balancer. As our proposal, Haven also performs horizontal
scalability but with virtual machines and our proposal uses
containers [2].

Another difference of our proposal regarding to HPA is that
while HPA performs CPU consumption measurements inside
containers, our proposal performs measurements outside of
containers, i. e., in the load balancer. This approach has the
advantage to watch system performance, regardless of the level
of resource utilization of containers. In Section 5 a comparison
is made between the HPA and the solution proposed in this
paper .

III. THEORETICAL CONCEPTS AND LITERATURE REVIEW

A. Containers

Container is a technology for creation of isolated pro-
cessing instances and enables virtualization at the operating
system level to provide protected processing portions and when
running on the same system, they are not aware that are sharing
resources as each one has its own network abstraction layer,
memory and processes[2].

Containers have a great portability, because they can run on
any operating system based on Linux. Virtualization depends
on a hypervisor to achieve similar portability. Virtualization
via hypervisors consumes more resources than containers. If
a container is not performing any task, it is not consuming
resources on the server [2]. Besides that, containers are very
dynamic to be created and destroyed, as they just have to start
or destroy processes in its isolated space.

B. Web Servers and Load Balancers

In our proposal, the infrastructure hosting the web system
must be prepared to meet the demand with high performance,
scalability and high availability. However there are many
challenges to be addressed so that a cluster of distributed
servers can function efficiently as if it were a single server.
These challenges range from the routing of requests to the
members of the cluster, methods for choosing the member to
receive the workload and methods to maintain the connection
status.[4].

In load balancing at the transport layer, the requests are
distributed among the members of the cluster based on in-
formations like IP addresses and ports. The load balancer
distributes client connections, which must know the IP address
cluster, among the various servers that effectively respond the
requests. In this case, as the load balancing process is based
on layer 4, the server is selected regardless of the content or
the type of request. [1]. When load balancers are in layer 5,
the distribution of workloads is based on the contents of the
requests.

C. PID Controllers

PID controllers (Proportional - Integral- Derivative) are
control algorithms that are widely used in industry. Examples
of its applications are temperature control environments, and
drone control. PID controllers have three coefficients : propor-
tional , integral and derivative. These coefficients are varied
in order to obtain the desired optimum control response for a
given process.

A PID controller works in a closed loop system where it is
possible to read the current state of a particular variable that is
being controlled, and according to its value, an action is per-
formed so that the variable of interest converges and remains
on a desired level (even considering external disturbances), for
the next iterations of time. [8]

Thus, the PID controller should read the current state of
the variable and calculate the output response, by calculating
the proportional, integral and derivative components and then
adding the three for calculating the control output. The pro-
portional component depends on the difference between the
desired value (setpoint) and the current value of the variable.
This difference is referred to as an error. The integral compo-
nent adds the error term over time. The derivative response is
proportional to the rate of change of the process variable.

In order to produce the necessary adjustments to the
system, the PID controllers use gain parameters Kp Ki and
Kd that should be adjusted. There are several methods for
adjusting these parameters, such as the manual method (guess
and check)) and the Ziegler -Nichols method [8].

In the manual method, the gains of each component are
adjusted using trial and error. For this, the effects that each
parameter causes the controller output must be known. In this
method , the terms Ki and Kd are set to zero, and the term
Kp is increased until the cycle output starts to oscillate. From
there, the term Ki should be slowly raised to reduce the steady
error. At this point the term Kd is incremented, in order to
decrease the oscillations at the cycle output. The discussion on

other methods of parameter adjustment is beyond the scope of
this paper, since we used the manual adjustment method.

IV. THE PROPOSED SOLUTION

Our proposal is based on a cloud computing environment
based on containers and a method of auto elasticity to comply
with a required system response time. For this purpose, we use
a closed loop system with a PID controller, which responds to
changes to system response time by increasing or decreasing
the number of containers in a load balancing cluster that
process web requests.

In the next subsections, we describe the tools that were
integrated and the implementation of the algorithm to provide
the features that enable our proposal.

A. Docker

Docker started as a project of the PaaS company (Platform
as a Service) dotCloud in 2013 [12] proposing to be an
integrator and facilitator for adoption of containers in pro-
duction environments and in large scale. Docker uses kernel
features to isolate the containers from the server, creating
isolated processes, network and privileges. The limitation and
accounting of resources (CPU, memory, disk space and I/O)
is made through the use of cgroups. Also the use of the file
system is done efficiently because it is based on copy-on-write,
which allows changes to a container to be simply a differential
update of the previous image.

One of the greatest advantages of Docker is the ability to
find, download and start images of containers that were created
by other developers very quickly and conveniently.

B. Kubernetes

Kubernetes is a system developed by Google [6], and
made available to the community, which aims to manage
the life cycle of containers in the nodes of a cluster. Thus,
Kubernetes is an orchestrator of containers, being able to
schedule the launch of containers between the nodes of a clus-
ter, to do admission control of containers, resource balancing
and provides scalability to the environment. Kubernetes also
provides features such as service discovery between containers,
service publication for access from outside the cluster and load
balancing between containers [6].

The infrastructure of a Kubernetes cluster is composed
of master nodes that control worker nodes, which run the
containers. All settings of the cluster are stored in a distributed
configuration repository, called Etcd. PODs are the basic unit
within Kubernetes. Containers are grouped in PODs and these
generally represent an application. These are created using
Replication Controllers which are used to define PODs that
can be scaled horizontally. Replication Controllers are also
responsible for maintaining the desired number of PODs active
in a cluster.

C. Apache Spark, Flume, HAproxy and Redis

Apache Spark is a distributed processing tool, ideal for
processing large databases. It was developed by AMPLab (UC
Berkeley) and performs data processing in memory by default.

Its basic structure of abstraction are the RDDS (Resilient
Distributed DataSets), which are collections of elements that
can undergo operations in parallel, making it possible to gener-
ate new RDDS from transformations such as map, reduce, filter
and join on RDDS [16]. This tool was chosen to integrate the
solution because it allows the solution to perform processing
of large databases in text format, in a scalable way.

Apache Spark offers an API called Spark Streaming,
which allows real-time data processing, through the creation
of structures called DStreams (discretized streams), which are
sequences of RDDs. The creation of DStreams is made by the
StreamingContext class where you can configure the duration
of each window of DStreams [16]. In our proposal, the duration
of each window was set to 5 seconds and the motivations for
this are further detailed in the next section.

In our proposal, the Spark Streaming is used to process
the load balancer logs, collecting the response time of each of
the requests that the system serves, in real time. This response
time information is stored in a time series format on a Redis
server, so that it can be used by the auto scaling algorithm
proposed in this article.

Spark receives the log entries of the load balancer in
text format, using the Flume tool. Flume is a service that
aggregates, collects and moves large volumes of data flow.
For its operation it creates a source that receives the data of
interest. This source is connected to a channel, where the data
will travel toward a sink [3].

Therefore, the function of this tool in the solution, is to
send, in real time, the load balancer access logs to Spark,
through the creation of a source of type Syslog, which receivers
the Load Balancer logs, and a memory channel that carries the
source data in memory. From there, Spark consumes this data
stream through an Avro Sink, which travels over the network.

The load balancer used in the solution is HAproxy, which
can act as a layer 4 or 7 load balancer, SSL terminator, reverse
proxy and other [17]. Currently, this is the load balancer
used by web sites as Reddit, Stack Overflow, Server Fault,
Instagram among others, and has been chosen as the cloud load
balancer of Red Hat’s OpenShift. HAProxy has the following
log format:

May 18 06:24:25 10.125.7.229 haproxy[1078]:
10.125.8.252:43839 [18/May/2016:06:24:24.988] cherrypy
cherrypy/10.125.7.227 0/0/2/26/28 200 169 - - —- 1/1/1/0/0
0/0 "GET /generate HTTP/1.0"

In the above line, there are informations such as the
waiting time in queue at the application server, http method
and response code, among others. The part with 0/0/2/26/28
contains the information: Tq ’/’ Tw ’/’ Tc ’/’ Tr ’/’ Tt, where
Tr is the time in milliseconds that the load balancer waits until
it receives a complete response of a web request to the server
[17]. So this represents the total time of the request processing
by the container.

In our proposal, the SparkStreaming processes the log
entries and separates the field Tr and stores it in the Redis
database, in a time series format. SparkStreaming is also
responsible for converting the format of the date of each line
to the number of seconds from 0 hour of every day, to support
the creation of time series.

Redis is used to store the time series, because it can provide
low latency both for writing and reading, as it keeps the data as
memory structures [14]. The integration of the solution with
Redis is made through the use of the Kairos library, which
creates a structure for storing time series in databases such as
Redis, Mongo, SQL or Cassandra [9]. This library provides
features, such as setting the number of entries to keep in the
database and the minimum time unit of interest of a series.
In the case of this work we keep stored in the series data
of the last 600 seconds, which is sufficient for the algorithm
operation.

Kairos also allows the calculation of statistical parameters
of the series, using configurable time windows. This allows, for
example, to compute average response time of an application
in the last two minutes. The minimum unit of time set in
this solution is 1 second. This allows good flexibility for
configuring the time windows for statistical calculations and
enables the generation of graphics with good time resolution
for monitoring and evaluation of the solution.

D. The Cloud Architecture

The proposed architecture is shown in Figure 1 and de-
scribed in the PAS pseudocode in this section. The PID
controller is used to maintain the average response time of a
particular application within a certain threshold. Our proposed
architecture, hereby called as PAS (PID based Autoscaler)
operates based on the following sequence:

1) Establishment of an average time threshold (setpoint)
desired to the system to answer requests. The monitor
receives the response time of the requests arriving at
the load balancer;

2) The monitor sends the average response time (the
average of the last 200 seconds) so that the PAS
algorithm calculates the number of containers needed
to reach the setpoint. The average of the last 200 sec-
onds was defined because it was found experimentally
that this value is adequate since avoids that outlier
values influence on the operation of the system.

3) PAS runs algorithm 1 and inform the desired number
of containers to Kubernetes. The current number of
containers is obtained using a Kubernetes tool called
kubectl, and the average response time of the cluster
is determined using the time series present in the
Redis database.

4) Kubernetes creates, mantains, or removes new con-
tainers, and ensures that the environment will remain
with the desired number of containers until the next
round of the algorithm (in this case, after 10 seconds).
This value of 10 seconds was chosen because it was
found that it is sufficient for Kubernetes to load new
containers.

E. Solution Operation

In order to allow the operation of the algorithm which
works with dynamic data received in real time, we use the
processing flow shown in Figure 2. Haproxy acts as the load
balancer of the solution. Its logs are sent to Flume that puts
the data in a memory channel and sends it to Spark Streaming,

Algoritmo 1: PAS
Input: Average response time of the cluster, Current

number of containers
Output: Desired number of containers

1 begin
2 Read the desired threshold of average response time

of the requests: t_ms_desired
3 Read the current number of containers:

n_containers_current
4 Read the average response of the cluster in ms:

t_ms_current
5 Calculate the error: e(t) = t_ms_desired -

t_ms_current
6 Calculate the PID output:
7

u(t) = Kpe(t) +Ki

∫ t

0

e(t)δt+Kd
d

dt
e(t) (1)

8 n_desired_containers=n_containers_currrent +
u(t)

9 end
10 return n_desired_containers

Figure 1: PAS Architecture

thus providing the information necessary for operation of the
algorithm.

Haproxy balances the requests in round robin mode be-
tween the Docker/Kubernetes nodes hosting the containers.
When the Docker/Kubernetes node receives the request, the
Kubernetes proxy performs load balancing between the con-
tainers of each server.

So, two levels of load balancing are performed, one
between the Docker/Kubernetes nodes, where Haproxy per-
forms the load balancing, and other internally within the
Docker/Kubernetes nodes where the service Kubernetes proxy
performs the load balancing.

We have developed in this research a set of specific codes
to customize the interaction between the tools, for example, to
generate the time series with system response times and for

the creation and destruction of containers, among others.

Figure 2: Processing Flow Between the Set of Tools

V. EXPERIMENTAL RESULTS

A. Environment and Evaluation Scenarios

To evaluate the solution we configured a Kubernetes v1.1.2
cluster on the top of Coreos (899.6.0 (2016-02-02)) operating
system, virtualised with VMWare ESXi 5.5.0. This environ-
ment was configured for solution validation. A production
environment could benefit more if the system Coreos was in-
stalled directly on physical machines because the virtualization
layer would be eliminated.

The cluster was built with the following components: 1
master node (4 vCPUs, 6 GB of RAM) , 1 Etcd node (4 vCPUs,
6 GB of RAM) and 4 worker nodes (4 vCPUs, 6 GB of RAM).
Ubuntu 14.04.3 LTS Virtual machines (VMWare ESXi 5.5.0),
with the following settings and tools: 1 haproxy 1.5.4 node (4
vCPUs , 4G GB of RAM) , 1 Spark 1.5.2 + Redis 2.8.4 node
(2 vCPU 10 GB of RAM) and 1 Flume 1.7.0 + PAS node (2
vCPU , 4 GB RAM)

We defined 4 evaluation scenarios. For the scenarios 1, 2
and 3, we generated an image of a container that runs the web
server Cherrypy 5.1.0. We configured a link on this server. The
link generates in each request an array of random size between
1,000 and 10,000 elements.

The service publication in Kubernetes was made through
the creation of a Replicaction Controller and the config-
uration of a service of the type NodePort. The HAProxy
load balancer was configured to balance requests between the
Docker/Kubernetes nodes using the IP addresses of the nodes
and ports published by the service of the type NodePort. Each
container had its processing and memory resources limited to
18 MB of RAM and 24 millicores of CPU.

Scenario 4 was evaluated with a more elaborate Web
system than the arrays generator of scenarios 1, 2 and 3. The
evaluation was made using the workload Rubis [15], which
is modeled to be a clone of eBay (www.ebay.com). Rubis
implements the basic features of ebay: product registration,
sale, bidding, browsing products by region (United States) and
categories. The installed version of Rubis 1.4.3 was obtained
in https://github.com/sguazt/RUBiS.

In the tests we used the PHP version of Rubis and a
MySQL 5.5 database. MySQL was installed in a virtual
machine with Ubuntu 14.04.1 (16 vCPU and 4 GB of RAM).
MySQL has been configured to allow caching of Rubis tables.
These high settings of CPU and RAM of the MySQL virtual
machine were carried out to ensure that there would be no
bottlenecks in access to the application database, since the
purpose of the tests is to test Web service auto scaling.
The database was populated from the dump obtained in
http://download.forge.ow2.org/rubis/rubis_dump.sql.gz.

As in the configuration described for scenarios 1, 2 and 3,
the service publication in Kubernetes was made through the
creation of a Replicaction Controller and the configuration of a
NodePort service. The HAproxy load balancer was configured
to balance requests between the Docker/Kubernetes nodes
using the IP addresses of the nodes and ports published
by the NodePort service. Each container had its processing
and memory resources limited to 500 MB of RAM and 160
millicores of CPU.

The PID in the PAS algorithm utilized the following
parameters: Kp = 0.016 , Ki = 0.000012 and Kd = 0.096,
which was set after several tests with the workloads, adjusting
the parameters using the manual method, or guess and check
, as described in section III-C.

B. Workload

The workload generation was made using "ab" tool
(apache bench). In order to generate a load with a realis-
tic profile we collected a set of accesses of the Portal da
Transparência (www.transparencia.gov.br), between May/2016
and June/2016. The captured time series in the range of 1
second is the number of accesses on that time interval. The
series was characterized with Kettani-Gubner method [10].
The self-similarity and long dependence of the series was
confirmed with the Hurst parameter H = 0.87 in the scales
of 1 second, 10 seconds and 100 seconds.

A sample of the obtained series can be seen in Figure 3.
This series is used to generate in every second, simultaneous
requests directed to the IP address of the load balancer which
distributes requests to the nodes of the Kubernetes cluster. The
workload intensity was set at 3 levels by multiplying the time
series by 1, 1.5 and 2, and preserving the same self-similarity
index. These loads are referred in the experiments as load_1 ,
load_1.5 and load_2 .

Figure 3: Workload Sample, H=0.87

1) Scenario 1: In this scenario the response time threshold
at the load balancer (setpoint) was set at 50 ms and we applied
load_1 and load_1.5. Figure 4 shows the system response time
while under load_1. The graph shows the adjustment caused by
the allocation of containers performed by the PAS algorithm
and stability achieved close the setpoint of 50 ms.

Figure 5 shows the allocation of containers. The number
of containers at the beginning of the experiment was equal

to 2. The system allocated the required number of containers
so that the average response time shown in Figure 4 reached
the setpoint. At the end of the run there were 26 allocated
containers .

Figure 4: Response Time (ms) x Time (s), load_1, setpoint
50 ms

Figure 5: Number of Containers x Time (s), load_1, setpoint
50 ms

Figure 6 shows the average response time of the system
while under load_1.5 and the setpoint kept at 50 ms. Figure
7 shows the containers allocation during this test. It is worth
noting that the container allocation was adjusted to keep the
average response time of the system near the setpoint. At the
end of the run, 52 containers were allocated. In this case, the
system under a greater load, allocated more containers to keep
the response time within the defined threshold.

2) Scenario 2: In this scenario, the response time threshold
in the load balancer (setpoint) was set at 50 ms and we
applied load_1 for 1000 seconds, then load_1.5 for another
1000 seconds (starting at second 1001), and then we applied
load_1 for more 1000 seconds (starting at second 2001). The
purpose of this test was to evaluate the behavior of the system
during sudden intensity changes.

As can be seen in figure 8 and 13, the system is capable
to adjust itself increasing the number of containers when the
intensity increases and decreases. It is observed that after
exposing the system to load_1.5 at second 1000, the response
time remains slightly over 50 ms, and after applying load_1 at
second 2000 the response time remains slightly below 50 ms.

Figure 6: Response Time (ms) x Time (s), load_1.5, setpoint
50 ms

Figure 7: Number of Containers x Time (ms), load_1.5,
setpoint 50 ms

Better results could be obtained for this case, readjusting the
parameters of the PID controller.

Figure 8: Response Time (ms) x Time (s), Variable load,
setpoint 50 ms

3) Scenario 3: Scenario 3 compares the proposed algo-
rithm in this paper with the HPA [7].

The comparison follows this procedure: the system con-
figured with the HPA_80 (configured to scale when the av-
erage consumption of the containers of a given Replication
Controller is above 80 %) is exposed to load_1, load_1.5 and
load_2 during 1000 seconds. At the end of the test the average
waiting time of the requests at the application layer (customer

Figure 9: Response Time (ms) x Time (s), Variable load,
setpoint 50 ms

perspective) is observed.

From these data, it was defined a setpoint to use with
the algorithm (PAS) for comparing with the response time
close to the HPA reference. The results will be compared by
checking the average amount of containers allocated during
the experiments and the average response times achieved in
the customer application layer.

As can be seen in Figure 10 the average response time
in the application layer with the HPA algorithm for each load
were: 66.18 ms for load_1, 110.12 ms for load_1.5 and 144.01
ms to load_2 .

For comparative purposes, the PAS setpoints was config-
ured to deliver an average response time close to those obtained
with the HPA. For this, we configured setpoints slightly below
those observed in the HPA, as the setpoint is controlled in the
load balancer, so the time measured in the customer application
layer should be slightly higher. The values set for setpoints are:
50 ms (PAS_50) for the load_1 , 80 ms (PAS_80) for load_1.5
and 100 ms (PAS_100) for load_2 .

Figures 10 and 11 show that for response times near the
value obtained by HPA, PAS system allocated less containers
than HPA. The comparative of the container allocation shows
that: PAS_50 allocated 44.02 % of which was allocated by the
HPA_80, PAS_80 allocated 36.07 % of which was allocated
by the HPA_80 to load_1 .5 and PAS_100 allocated 12.72%
of which was allocated by the HPA_80 to load_2 .

4) Scenario 4: In scenario 4 we evaluated the behavior
of the PAS algorithm in the Rubis environment. We used
loads_1.5. To generate request variability at every second the
accesses to the links is divided as follows: 10 percent home
page access, 10 percent of queries to the list of products with
random category and random region, 40 percent of visits to
random products and 40 percent of queries to random user
profiles.

In this test the setpoint is set to 50 ms and it is applied
load_1.5. Figure 13 shows the container allocation during the
test, needed to control the application response time (setpoint
= 50 ms) for load_1.5, and figure 12, shows the response
time controlled near the setpoint. As can be seen, even with

Figure 10: Comparison between HPA and PAS (Average
Response Time of the System)

Figure 11: Comparison between HPA and PAS (Average
number of containers)

a much more varied workload than the array generator, PAS
can control the average response time of the application close
to the threshold .

Figure 12: Rubis Response Time (ms) x Time (s), load_1.5,
setpoint 50 ms

C. Analysis of Results

The experimental results show that for all the scenarios our
proposal is efficient for resource allocation. In the scenario
(V-B3), the PAS algorithm optimizes the allocation of the
number of containers to hold the values of setpoints within
a given threshold. The HPA allocates a greater number of
containers to achieve equivalent threshold response times for

Figure 13: Rubis Number of Containers x Time (s), load_1.5,
setpoint 50 ms

requests in the application layer. This result shows that the
allocation of a larger number of containers can increase the
complexity of load balancing time and not necessarily produce
better response times.

The obtained results show that the PAS algorithm proposed
in this work has the potential to promote an optimization
of the number of allocated containers in a cloud computing
environment.

The tested scenarios show that the PAS algorithm is a
viable alternative to promote auto elasticity to comply with
a required response time. Furthermore, performing measure-
ments outside the container, allows PAS to be a generic tool
for providing auto elasticity in cloud systems.

VI. CONCLUSION AND FUTURE WORKS

This paper presented an algorithm based on response
time to scale containers on a Cloud Computing system. The
proposal defines a cloud computing architecture based on
containers and uses a PAS algorithm (PID based Autoscaler)
to optimize resource allocation.

The proposal was evaluated in 4 scenarios using different
workloads characterized from real world applications. The
results shows that our proposal has the potential application to
provide auto elasticity in cloud computing systems based on
containers. The comparison with the native tool of Kubernetes,
the HPA shows a higher efficiency for the PAS proposal.

In future work we intend to improve the PAS algorithm
with sophisticated methods for setting the PID parameters.
Furthermore the algorithm will be tested with other container
orchestrators, such as Mesos and Docker Swarm, to verify that
PAS can be a generic tool to provide auto elasticity in cloud
computing environments based on containers.

REFERENCES

[1] Mitchell Anicas. Mitchel Anicas an introduction to haproxy and load
balancing concepts. https://www.digitalocean.com/community/tutorials/
an-introduction-to-haproxy-and-load-balancing-concepts, 2014.

[2] Docker. Docker the definitive guide to docker containers.
https://www.Docker.com/sites/default/files/WP-%20Definitive%
20Guide%20To%20Containers.pdf, 2016.

[3] Flume. Flume flume user guide. https://flume.apache.org/
FlumeUserGuide.html, 2016.

[4] Katja Gilly, Carlos Juiz, and Ramon Puigjaner. An up-to-date survey
in web load balancing. World Wide Web, 14(2):105–131, 2011.

[5] Zhenhuan Gong, Xiaohui Gu, and John Wilkes. Press: Predictive
elastic resource scaling for cloud systems. In Network and Service
Management (CNSM), 2010 International Conference on, pages 9–16.
IEEE, 2010.

[6] Google. Google container cluster manager from google. https://github.
com/kubernetes/kubernetes, 2016.

[7] Google. Google horizontal pod autoscaler. https:
//github.com/kubernetes/kubernetes/blob/release-1.2/docs/design/
horizontal-pod-autoscaler.md, 2016.

[8] National Instruments. National Instruments explicando a teoria pid.
http://www.ni.com/white-paper/3782/pt/, 2015.

[9] Kairos. Kairos time series data storage in redis, mongo, sql and
cassandra. https://pypi.python.org/pypi/kairos, 2015.

[10] Houssain Kettani, John Gubner, et al. A novel approach to the
estimation of the hurst parameter in self-similar traffic. In Local
Computer Networks, 2002. Proceedings. LCN 2002. 27th Annual IEEE
Conference on, pages 160–165. IEEE, 2002.

[11] Tania Lorido-Botrán, José Miguel-Alonso, and Jose Antonio Lozano.
Auto-scaling techniques for elastic applications in cloud environments.
Department of Computer Architecture and Technology, University of
Basque Country, Tech. Rep. EHU-KAT-IK-09, 12:2012, 2012.

[12] Nick Martin. Nick Martin a brief history of docker contain-
ers’ overnight success. http://searchservervirtualization.techtarget.com/
feature/A-brief-history-of-Docker-Containers-overnight-success, 2015.

[13] Rishabh Poddar, Anilkumar Vishnoi, and Vijay Mann. Haven: Holistic
load balancing and auto scaling in the cloud. 2015.

[14] Redis. Redis redis documentation. http://redis.io/documentation, 2015.
[15] Rubis. Rubis rubis: Rice university bidding system. http://rubis.ow2.

org/, 2009.
[16] Spark. Spark spark programming guide. https://spark.apache.org/docs/

1.5.2/programming-guide.html, 2015.
[17] Willy Tarreau. HAProxy haproxy configuration manual. http://www.

haproxy.org/download/1.5/doc/configuration.txt, 2015.

